Background/Objectives: An automated extrusion-based material deposition is a contemporary and rapid method for pharmaceutical dose-dispensing and preparing (printing) individualized solid dosage forms. The aim of this study was to investigate and gain knowledge of the feasibility of automated extrusion-based material deposition technology in preparing customized prednisolone (PRD)-loaded gel tablets for veterinary applications (primarily for dogs and cats). Methods: The PRD loads of the extrusion-based deposited gel tablets were 0.5% and 1.0%, and the target weights of tablets were 0.250 g, 0.500 g, and 1.000 g. The effects of the material deposition processes on the physical solid state, in vitro dissolution, and the physicochemical stability of PRD gel tablets were investigated. Results: The small-sized gel tablets presented a uniform round shape with an exceptionally smooth outer surface texture. The actual average weight of the tablets (n = 10) was very close to the target weight, showing the precision of the process. We found that PRD was in a pseudopolymorphic sesquihydrate form (instead of an initial PRD crystalline form II) in the gel tablets. In all the immediate-release gel tablets studied, more than 70% of the drug load was released within 30 min. The soft texture and dimensions of gel tablets affected the dissolution behaviour in vitro, suggesting the need for further development and standardization of a dissolution test method for such gel tablets. A short-term storage stability study revealed that the content of PRD did not decrease within 3 months. Conclusions: Automated extrusion-based material deposition is a feasible method for the rapid preparation of gel tablets intended for veterinary applications. In addition, the present technology and gel tablets could be used in pediatric and personalized medicine where precise dosing is crucial.
Loading....